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SUMMARY: In this paper we describe a method of plain and multi compos-
ing of ordinates to define spectral filters. We apply the method to the simulated
equidistant observations, and we find that the suitable filters are easy to construct

and apply.
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1. INTRODUCTION

There are several common limitations of the
spectral analysis methods: incommensurability of a
considered periodic component and of the interval of
observations; non-equidistant registration of depen-
dant variable; unknown starting points of the peri-
odic terms; existence and level of modulation (damp-
ing of components); limited interval of the observa-
tions.

Practice suggests that there is no universal
method to overcome these limitations. If we do
not have enough theoretical points for the analytical
modelling of observational data, for a particular ob-
servational material, we must choose a corresponding
method.

Earth’s rotation is disturbed and influenced
by many forces producing different changes. We have
fixed our attention on the periodic changes and their
long-period fluctuations.

In an attempt to select suitable spectral fil-
ters to examine real observational data, we have here
synthesized data that correspond to observations. In
particular, we generated the data similar to observa-
tional data from the Time Service of the Belgrade
Astronomical Observatory.

Then, in accordance with our experience in

using the method of multi-composing of ordinates,
as described in Purovié (1979), we constructed some
suitable spectral filters for the decomposition of the
synthetic data.

2. PLAIN AND COMPLEX
TRANSFORMATIONS

Assume that observational data are given by a
table y; = f(x;), (i = 1,n), where x;1+1 —x; = const.;
if the process contains only harmonic terms, then

m
Yi R Z Ay cos(wpzi + Dp)
p=1
where A, is the amplitude of harmonic component,
wp is the so called circular frequency (w = 27/T),)
and @, is its phase. Then

Yi = ZAP cos(wpri + Pp) + s(x;), (1)

p=1
where s(z;) is the noise.

(0]
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The first task in the spectral analysis is obtain-
ing of the unknown parameters A,,wp,, ®,,p = 1, m
for all m harmonic components. To achieve this one
finds selective transformation (spectral filter) for
a given p, with minimum number of steps needed
for optimization. It means that a chosen filter must
preserve only useful transformed values.

Let n = 2r 4+ 1, where r is an integer, and
yi,© = 1,n is sorted by increasing x. For all | < r
one selects a set yp+;,5 = 0,1,1 <k <2r+1—1; let

l

Ry =coy + Y ¢i(Yr—j + Yrti) (2)
=
or
!
Ry =coYi+ Y ¢, 3)
j=1

where YJ’“ = Yp—j + Yt; for j = 1,1. Ry is plain (lin-
ear) transformation of order I, with coefficients ¢; in
the neighborhood of the period T} = 27 /w; (Durovié
1979).

Under assumption that in Eq. (1) s(z) = 0,
we have

ij = Z{Ap cos|wp(zr — J) + @]

p=1
+ Ay coslwp(wg + 5) + ©pl},

or

ij = Z 2 cos(wpj)Ap cos(wpxy + @p).  (4)

p=1

The series, resulting from (4), is harmonic process
with same phases and frequencies, but with different
amplitudes; this difference is measured by

off =2 cos(wpj) (5)
By substituting this in Eq. (3) we obtain a new ex-

pression for the linear transformation

m l

R = Z(CO + Z cjall Ay cos(wpzp + @p).  (6)

p=1 Jj=1

This means that the amplitudes of harmonic compo-
nents of basic signal are changed by a quantity

l
pQZCO_FZCjO‘?v (7)
j=1

known as power factor. Set of these R = {p},k =
1,1} is known as filter, originating from p = p(w).
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When coefficients ¢, j = 1,1 in R; are equal to
—1, 0, 1, then these are plain or simple combinations
of ordinates with low selectivity.

To eliminate the low selectivity one has to sum

plain transformations.
Let

! COS 2ZT-i_l’]T
of =1+ E of = —
, COS —
j=1 p

The choice of [ is done in accordance with the con-
dition o} = 0 for the corresponding wy, i.e. p. The

differentiation will yield conditions for the equilib-
rium points

dp
providing that cos(m/p) # 0.

Of special significance are double transforma-
tions with arbitrary shift. Let shift be L/2. Then

l
(S)pz=we+ Y _(-1)Yip/2, (9)

=1

and power factor is

(o) icosL;;l%
91)L/2 = 1Ln
COSET
Roots of (07) /2 are given by
20+ 1)L L
= P=0,1,2,..
P=%pr1 PTopLT 0,1,2,

This transformation will amplify the harmonic term
with period p = L and its odd subharmonic terms.

Finally, we can construct multi-transforma-
tion for the case of distinguishing very close periodic
components.

As we have seen, one maximum of power fac-
tors in the case of double transformation is at in-
finity and is thus independent of I. By composing
these double transformations it is possible to damp
all periodic terms, except these at infinity:

H(Y) =YY,.Y; 5
and new power factor is
(10)

Ifl < s < ... < t, boundary of amplification is
p1 = 4t. The others result from

t
2

T(a) = qras...qq.

<Ii<t, za II(Y) =YY,
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t t

%glgs—l, %gsgt—l, za II(Y) = Y1Y.Y;,

2t t 2t

—<[l<s—-1 - <s<g—-1, —<g<t-—-1

5_ —S 9y 2—S—q ) 3—q— )
za IY) = V1YY, Y,

and so on.

In order to damp terms p; < p1, zeros of power
factor 7(«) must be uniformly distributed in the re-
gion p; < pr,

Al s o a
oL+1 P P = ST

P= aEyAS|

Similar procedure applies to the other kinds
of the multi-transformations.

II(S) = 5,5;...S;
with power factors
7(0) = 0105...0¢.

There are zeros

2041 2541 241
- L y D= L yer P L )

where p # 1/L, and t is found from

p1—1
t1 5

Arbitrary shifting in multi-transformations
provides the possibility to separate periodic terms
very close to a given periodic term. Curves represent-
ing power factors of these transformations consist of
series with very prominent peaks corresponding to
the period p = P, and to its odd subharmonics.

The general procedure consists of the follow-
ing steps. First, we apply the transformation II(.S)
or similar, to amplify components with p; > 2t + 1
or p; > 2t. Next, we gradually decrease ¢ in order to
successively identify the other components. Finally,
the identified terms are precisely determined with
I1(S1) /2 and I1(Z;) 1, /2, and removed before repeti-
tion of the procedure.

3. SYNTHESIS OF POLY-HARMONIC
PROCESS AND DECOMPOSITION

We have simulated data UT1 — UTC in an
interval of 20 years; all data are made equidistant.
The synthesis covers harmonic terms with periods of
1, 1.2, 2.0 and 9.0 years:

2T
UTS(t) = 0.1251n(36525t+g)+
21 T
1 i t
+ 0 65sm(43930 +4)
. 2
+ 0.0351n(724 t+—)+
T
. in(———t+ —
+ 008sm(3287.25 +6)

Data are presented on Fig. 1.
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Fig. 1. Simulated data UT1 — UTC containing

harmonic terms with periods of 1.0, 1.2, 2.0 and 9.0
years.

First, we apply transformation S15S516S517.
The curve of selectivity is shown on Fig. 2.
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This transformation removes all periodic
terms with periods less then 35 x 15 = 525 days
(= 1.5 year), and the 2 year term is damped. The
residual signals (henceforth simply referred to as
residuals) are divided by power factor

. 31 . 33
oo sm(m)xsm(wgww)
1 1 1 - :
o6 sin® (5335895775 )
35
X sin( u )

9 x 365.25/15

to derive the true amplitudes. Fig. 3 shows the ob-
tained values with only the 9 year term remaining.
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Fig. 3. Isolated 9 year term.
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Fig. 4. Curve derived after removing 9 year term
from remowval of the UT1 — UTC' data.

After removal of even the 9 year term (resid-
uals plotted on Fig. 4), we apply transformation
813814815 which damped all periodic terms with pe-
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riods less then 465 days (= 1.3 years). The curve of
selectivity is represented on Fig. 5.
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Fig. 6. Isolated 2 year term.

Fig. 6 shows isolated 2 year term with ampli-
tude derived by dividing residuals with power factor

i 27 o 29
oG — bln(2><365.72r5/15)Xbln(2><365,72r5/15)
13014015 = :

Sln3(2><36;25/15)
31
X sin( T )

2 x 365.25/15

After removal of the 2 year term (see Fig. 7),
we have applied to the residuals the transformation
(5456)24/2 With maximum at annual term and zero

at Chandler nutation position (Fig. 8).
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Fig. 7. Curve derived after removing 9 year term  Fig. 9. Isolated annual term.

and 2 year term from removal of the UT1 — UTC

data.
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Power factor of annual term (see Fig. 9) is

given by

(0406)24/2 =

After removal of the annual term, the residuals cor-
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respond to the 1.2 year term only (see Fig. 10).
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Fig. 10. Isolated 1.2 year term.

4. CONCLUSIONS

Under conditions assumed to hold in the syn-
thesis of model data, spectral filters derived from
multi-composing of ordinates are easy to construct
and apply.

The real observational data are, however, dif-
ferent from the simulated ones, and we must test our
filters especially in the case of latitude and time ser-
vice observations.
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IIpemzoono caonwmemne

Y oBOM pamny OmHUCyjeMO MeTON HPOCTUX Ha CHUMYyJUpPaHA EKBUIVUCTAHTHA IIOCMATpama U
U BUNIECTPYKUX OPAVHATA 3a NePUHUCAHE CIEK- HaNIW CMO IOTOJHE (UITEpPEe KOJU Ce JTaKO KOH-
TpaJHUX QuiITepa. IIpumennau cMoO MeTOn  CTPYHUIIYy M ymoTpeOsmaBajy.
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